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A theoretical model is developed for the density and temperature of confined electrons and the plasma
potential in low-density hot-filament discharges. These three parameters are found from a simultaneous solu-
tion of the equations for ion particle balance, electron particle balance, and electron energy balance. In the
model, electrons are lost by diffusion in velocity over the potential barrier determined by the plasma potential.
The confined electrons are heated by the unconfined electrons that are the secondaries from the wall and, to a
lesser extent, by the primary electrons from the filaments. The plasma parameters calculated from the model
agree with parameters measured in a double plasma device that has been modified to have a clean wall that
gives a single value for the confining potential.
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I. INTRODUCTION

The electron temperature in nearly-collisionless hot-
filament discharges, such as those in the double-plasma de-
vices, is typically 0.1–5 eV. Although there has been consid-
erable work on understanding particle and energy balance in
these discharges, there is no widely accepted way to find the
electron temperature from first principles. Many processes
that can affect particle and energy balance have been found,
including heating by secondary electrons from the walls and
by primary electrons from the filaments �1–4�. These pro-
cesses are also important for modeling ion sources �5,6� and
ion thrusters �7�. The lack of a model for energy balance has
considerable impact on the way in which experimental
plasma physics is done. The experimentalist needing a nearly
collisionless plasma with a particular density and electron
temperature will typically go to the literature to find what
device will give the desired plasma, rather than calculate
what can be obtained with a given discharge current and
filling pressure. In this work, a first-principles model is pre-
sented from which the plasma density, electron temperature
and plasma potential can be calculated, for plasmas with a
sufficiently low neutral density. The number density and en-
ergies of the energetic electrons that do the heating are re-
quired as inputs to the model. Experimental data are pre-
sented, which show that the model applies to an
unmagnetized, hot-filament discharge in low-pressure gas
��1 mTorr� with a plasma density in the range
107–108 cm−3. The physical processes in the model have pre-
viously appeared in the literature. The model combines these
known processes in a new way and finds the plasma param-
eters as simultaneous solutions to three equations. The model
was developed for a double-plasma device �8� in which
plasma is created by primary electrons from heated fila-
ments. The plasma density in these devices can be increased
by surface magnetic containment, �9,10� but the effects of
these fields have not been included in the model.

In the model, the electrons are divided into the four popu-
lations illustrated in Fig. 1�a�. Population I is the confined
electrons that have energy less than qVp, where q is the el-
ementary charge and Vp is the plasma potential. The potential

difference Vp between the center of the plasma and the wall
is assumed to occur primarily in a thin sheath at the wall that
reflects the confined electrons. The wall potential is assumed
to be zero. Population II is secondary electrons released from
the wall by the primary electrons. These secondaries have a
distribution that is approximately Maxwellian with a tem-
perature of �2 eV. Population III is energetic primary elec-
trons from the heated filaments that create the plasma by
impact ionization of the neutral gas. These primaries are as-
sumed to be monoenergetic with an energy determined by
the difference between the filament bias potential and the
plasma potential. The fourth population has its origin in the
ionization of the neutral gas. Impact ionization creates sec-
ondary electrons with an energy distribution that has a width
of approximately 10–15 eV, Fig. 1�b�. Electrons created with
energy less than qVp become population I. The electrons cre-
ated with energy greater than qVp become population IV. For
typical discharge conditions, populations II, III, and IV are a
small fraction of the density. In 1925 Langmuir �11� showed
by analysis of probe data that at least three populations �I,
III, and IV� were present in hot-filament discharges in mer-

FIG. 1. �a� Plot of the electron energy distribution F�E� showing
the locations of the four electron populations. �b� Plot of the source
distribution S�E� of electrons created by impact ionization of the
neutral gas. Electrons created with energy E below qVp become
population I electrons and those created with energy above qVp

become population IV.
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cury. The division into populations with a dividing energy at
qVp was introduced into discharge modeling by Tsendin and
Golubovskii �12�.

The equation for ion particle balance, described in Sec.
II A below, is easily written by balancing the rate of ioniza-
tion with the rate of ion loss, which is calculable from the ion
current density at the wall sheath. This current density is
often attributed to Bohm �13� although the ion current in the
collisionless sheath was first formulated by Tonks and Lang-
muir �14� and first solved in detail by Harrison and Thomson
�15�. This collisionless sheath model was subsequently incor-
porated into “free fall” models of ion particle balance for the
positive column �16,17� and into models for hot-filament dis-
charges �2�.

The input to the electron particle balance equation, in Sec.
II B 1, is the rate of ionization. This work is focused on
finding the parameters of the confined population, thus the
source rate is the fraction of the ionization rate that corre-
sponds to the creation of electrons with energy below qVp.
This fraction was introduced into discharge modeling by
Brunet and Vincent �18�. It is this fraction of the ionization
rate, which may be much smaller than one, that replenishes
the confined electrons. In some models for the electron cur-
rent to the walls, it is assumed that the electrons are Max-
wellian and the loss current is then the random current of
electrons reduced by the factor exp�−qVp /Te�, where Te is
the temperature of the confined electrons in energy units. The
walls of the device, however, are not a small perturbation
and the distribution of confined electrons is depleted both at
and above the energy qVp. This depletion is easily observed
in afterglows, �19� but is often not evident in active dis-
charges because the distribution of confined electrons joins
smoothly with the distribution of unconfined electrons.

Confined electrons diffuse in velocity and are lost at the
boundary in velocity space that corresponds to the height of
the potential barrier qVp. Collisions with neutral atoms
change the electron energy by a small fraction because of the
small recoil of the more massive neutrals. At sufficiently low
pressures, the electron velocity is changed primarily by col-
lisions of confined electrons among themselves, which may
be described by a transport equation with a Fokker-Planck
collision operator, �20,21� discussed in Sec. II B 2. Loss by
diffusion in velocity over the potential barrier has been mod-
eled in detail for magnetic mirrors in which there is a strong
ambipolar potential that confines the electrons �22–24�. For
unmagnetized plasma, the loss boundary in velocity space
can be modeled as a spherical surface and the solution for the
loss rate can be obtained algebraically. The loss rate is a
function of qVp, thus qVp may be determined as the potential
that causes a loss of confined electrons that is equal to their
rate of creation.

The rate of energy loss by confined electrons, Sec. II C 1,
is simply the rate of particle loss multiplied by the energy
qVp that electrons carry when lost. Hershkowitz et al. �3�
demonstrated experimentally that an important source of en-
ergy for the confined electrons is their equilibration with the
more energetic unconfined electrons. This heating is incorpo-
rated into the model of energy balance, in Secs. II C 2 and
II C 3, by finding the flow of energy from the unconfined
populations to the confined population. The calculation is

made more accurate by finding the slowing of the popula-
tions of unconfined electrons using their distribution func-
tion, rather than by using a simpler equilibration time based
upon two temperatures. In Sec. II C 4, the energy with which
electrons are created is included as an additional energy
source. The plasma potential is assumed to be below the first
excitation potential, thus energy balance for the confined
electrons is simplified because the confined electrons do not
have these inelastic collisions.

Discharges in high-pressure gases �where the product of
the radius and pressure is Pr�50 Torr cm� are collisional
and thus are described by a fluid model in which the particle
motion is from diffusion and mobility. Energy balance has
been included in fluid models by finding higher order mo-
ments of the distribution function �25�. As the pressure is
reduced �Pr�1 Torr cm�, nonlocal kinetic models are used
in which the distribution function is found from a two-term
expansion of the Boltzmann equation �26,27�. Suprathermal
electrons �with energy above the plasma potential� are lost
preferentially, a process called diffusive cooling �28�. This
cooling has been included in “zero-dimensional” kinetic
models by having a cutoff in energy �29� and has been in-
cluded in greater detail by making the electron distribution a
function of both radius and velocity with transport by diffu-
sion and mobility in the radial direction �30–36�. In these
models, electrons are driven to higher velocity by the dc
electric field. Particles with energy above the plasma poten-
tial have diffusive motion toward the wall, in contrast to the
model presented here in which this loss is immediate.
Electron-electron collsions described by a Fokker-Planck
collision operator have been included in several models of
low-pressure discharges �negative glows, �37� afterglows,
�38� RF, �39� and microwave discharges �40��. The model
presented here, which considers only electron-electron colli-
sions, is most like the model of Arslanbekov and Kudryavt-
sev �37� that also includes electron-atom collisions that result
in electron and ion losses being diffusive rather than “free
flight.” There have been several reviews of discharge models
for plasmas sufficiently collisional for the losses to be de-
scribed by diffusion and mobility �23,41,42�.

In Sec. III, data from a modified double plasma device are
presented which support the model. The calculated plasma
potential and electron temperature are within about 20% of
model values over about an order of magnitude in density.
Agreement between the model and the data required insert-
ing clean metal liners into the experiment in order to have a
more uniform wall potential. The modifications to the experi-
ment are described in detail because the model will fail if
applied to an experiment with “dirty” walls. Data are pre-
sented to illustrate the changes observed in the probe data
when the walls are sufficiently clean to provide a uniform
wall potential. The model is used to find additional plasma
parameters such as the mean particle lifetime and equilibra-
tion times in Sec. IV and these parameters are used to exam-
ine validity of the assumptions. In Sec. V is a conclusion.

II. PHYSICAL MODEL

The model requires three equations to find the variables
ne, Te and Vp, where ne is the density of confined electrons.
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The first equation is the ion particle balance equation, which
gives a relation between density and temperature of confined
electrons. The second and third equations are for electron
particle balance and electron energy balance.

A. Ion particle balance

Ion particle balance is particularly simple because the ion
current density at the wall has approximately the Bohm satu-
ration value �0.5 n0 q cs, where n0 is the ion density, q is the
elementary charge, cs=�Te /mi is the ion sound speed and mi
is the ion mass. Because of the quasineutrality requirement,
n0 is also the sum of the densities of the four populations of
electrons. This relation with a numerical coefficient 0.5 ap-
plies for collisionless planar discharges having dimensions of
�103 Debye lengths and can be found from the sheath model
initially developed by Tonks and Langmuir �14�. A homoge-
neous ionization source function is appropriate for dis-
charges in which the ionization is by energetic electrons that
have few collisions before hitting the wall. For homogeneous
ionization and cylindrical geometry, Self �43� and Self and
Ewald �44� found from both a kinetic and a fluid model a
coefficient of 0.42. In a recent paper, Sternovsky �45� inves-
tigated the effect of ion-neutral collisions on the ion flux to
the wall in cylindrical geometry. The collisionless coefficient
0.42 is reduced due to charge-exchange collisions by ap-
proximately 8%, when the radius of the plasma is one mean
free path. The reduction is by 20% when the radius is three
mean free paths. In this work, the cylindrical value of 0.42 is
used for the coefficient and the small ��10% � collisional
correction is ignored.

The ion particle balance equation is obtained by setting
the creation rate of ions equal to the integrated flux of ions to
the walls. For homogeneous ionization, the number of ions
created per unit time is RV, where R is the ionization rate and
V is the plasma volume. The number of ions lost per unit
time is the product of the ion flux and the area A of the wall.
The ion particle balance equation is then

RV = 0.42A n0
�Te/mi. �1�

The mean ion lifetime �ion is

�ion =
n0

R
=

2.4V

A�Te/mi

=
1.2r*

�Te/mi

, �2�

where we have defined r*=2V /A as the approximate radius
for a cylindrical plasma. This may be rearranged to express
the density as a function of the electron temperature and the
ionization rate

n0�Te� =
1.2r*R
�Te/mi

. �3a�

Alternatively, this equation can be written

R�n0,Te� =
n0

�Te/mi

1.2r* , �3b�

which treats the ionization rate as the dependent variable.

B. Electron particle balance

1. Source rate for confined electrons

The confined electrons are replenished by the fraction of
electrons from ionization with energy below the confining
potential qVp. The distribution of secondaries from ioniza-
tion found by Opal et al., �46� is approximately

S�E� =
2

�W
� 1

1 + �E/W�2� , �4�

where the distribution has been normalized to unity, E is the
energy of the secondary electron, W=10 eV for Ar, and W
=15.8 eV for He. The validity of this expression for E
�1 V is discussed in Ref. �47�. This distribution was mea-
sured for primary electron energies large in comparison with
the ionization energy �46�. For primary energies that are
smaller, this distribution is a poor approximation because the
true distribution is cut off at the energy of the incident elec-
tron minus the ionization energy. The fraction F�Vp� of sec-
ondary electrons that is confined by the plasma potential is
�18,48�

F�Vp� = 	
0

qVp dE

1 + �E/W�2
	
0

P dE

1 + �E/W�2

=
arctan�qVp/W�
arctan�P/W�

�
qVp

W arctan�P/W�
, �5�

where P=q�Vp−Vfil�− I , P is the maximum energy of a sec-
ondary electron from ionization, Vfil is the filament bias po-
tential, and I is the energy to ionize the neutral. The rate of
replacement of confined electrons is F�Vp�R and the mean
electron lifetime �elec is

�elec =
ne

F�Vp�R
=

1.2r*

F�Vp��Te/mi

. �6�

The flux to the wall of confined electrons is F(Vp�RV and the
flux to the wall of secondaries from ionization that are not
confined is �1−F�Vp��RV. The sum of these particle fluxes is
equal to the ion flux RV. Although impact ionization creates
electrons and ions at the same rate, the confined electrons are
replaced at a lower rate than the ions and thus have a longer
mean lifetime.

2. Electron particle balance

In a steady state, the rate of generation of confined elec-
trons is balanced by their loss through diffusion in velocity
over the confining potential barrier. This diffusion is de-
scribed by the Fokker-Planck equation with a source term,
�49�

� f

�t
=

1

v2

�

�v
�YI�x� f�v� +

v
2x2

� f�v�
�v

�� + S�v�

= −
1

v2

�

�v
�v2��v�� + S�v� , �7�

where
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I�x� = nf��x� − x
d�

dx
� , �8�

v is the radial electron velocity in spherical coordinates, f�v�
is the distribution of confined electrons, S�v� is the source
distribution function, Y =4��q2 /4��0me�2ln � , 4�v2��v� is
the flux of particles through a spherical surface at velocity
v , ��x�=erf�x� , x2=mev2 /2Tf , nf is the number density of
field particles, Tf is the temperature of the field particles, the
expression for I�x� is for field particles that are Maxwellian,
and ln � is the Coulomb logarithm. For a Maxwellian distri-
bution colliding with itself, nf =ne , Tf =Te, the two terms in
the curly brackets are equal and opposite, and the distribu-
tion does not change if S�v�=0. In a steady state, the integral
of 4�v2S�v�dv is the ionization rate R. The rate of loss of
electrons by diffusion over the barrier is 4�v2��v� evaluated
at the velocity w=�2qVp /me corresponding to the height of
the barrier.

In a steady state, the flux of electrons through a spherical
surface in velocity space at radius v is equal to the rate of
production of electrons with velocity less than v. Thus the
particle balance equation for trapped electrons is obtained by
setting the ionization rate for the trapped fraction equal to the
loss by diffusion at the velocity w. We multiply Eq. �7� by
4�v2 and integrate once to obtain

4�v2��v� = F�1

2
mv2�R , �9�

thus

F�1

2
mv2�R = − 4�YI�x� f�v� +

Te

mev

� f

�v
� . �10�

We assume that the distribution function can be written
f�v�= f0�v�+ f1�v� where f0�v� is a Maxwellian. We find for
v2	2Te /me

f1�v� � −

RF�1

2
mv2�

4�YI�x�
, �11�

where we have used that the term with �f1 /�v is negligible
for v2	2Te /me, which can be verified a posteriori. The total
distribution of confined electrons, f0�v�+ f1�v�, descends to
the phase space density of the population II electrons �see
Fig. 1�a�� at the velocity w corresponding to the energy qVp,
or

f�w� = ne me

2�Te
�3/2

exp�− qVp/Te� − � RF�qVp�
4�YI��qVp/Te�

�
= nse� me

2�Tse
�3/2

� 0. �12�

For the conditions of our experiment, the phase space density
of secondaries is negligible in comparison with the other
terms in the equation and can be set equal to zero. From this
approximation and Eq. �6�, we obtain

qVp/Te = − ln�RF�Vp��2�Te/me�3/2

4�Yne
2 � = ln�4�
ee�elec� ,

�13�

where we have used that I�x�→ne for suprathermal veloci-
ties and have defined a collision frequency 
ee
=neY�me /2�Te�3/2 that is approximately the Spitzer electron-
electron collision frequency. This shows that the dimension-
less parameter qVp /Te is approximately 7 when the electron
lifetime is about 100 electron-electron collision times. An
analogous expression for collisional plasma has been derived
by Arslanbekov and Kudryavtsev �37� who set equal the
losses of ions by spatial diffusion and the losses of confined
electrons by diffusion in velocity.

C. Electron energy balance

1. Energy carried by lost electrons

Confined plasma electrons are lost to the wall if v cos �
��2qVp /me where v cos � is the component of velocity per-
pendicular to the wall �12�. We assume that the angular scat-
tering is sufficiently rapid that electrons are lost soon after
the energy qVp is passed and that the energy at the time of
loss is qVp. The rate of energy loss per confined electron is
then qVp /�elec.

2. Electron heating by primaries

The heating of the confined electrons by energetic prima-
ries is calculated most easily by finding the energy lost by
the primaries. For primaries with velocity vpri and with en-
ergy Upri=0.5 me vpri

2 that is much greater than the energy of
the confined electrons, the energy loss rate per primary elec-
tron is �49�

dUpri

dt
=

− Yneme

vpri
. �14�

An equilibration time �pri can be defined using

1

�pri
=

− 1

Upri

dUpri

dt
=

2Yne

vpri
3 . �15�

The rate of energy gain per confined electron is then

dQ

dt
= −

npri

ne

dU

dt
=

npri

ne

Upri

�pri
, �16�

where Q is the energy transferred to a confined electron. The
mean energy gained by a confined electron is obtained by
multiplying this transfer rate by the mean lifetime �elec.

3. Electron heating by wall secondaries

Langmuir probe traces from devices often show a high
temperature tail that is secondary electrons from the wall.
Wall secondaries have a characteristic energy of �2 eV that
is nearly independent of the primary energy and of the wall
material �50,51�. The wall secondaries are accelerated into
the plasma by the sheath at the wall and are likely to be
absorbed at the wall after one transit. Their mean lifetime in
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the plasma is so short that they are not significantly heated or
cooled by collisions with the confined electrons. The con-
fined electrons, however, have a much longer mean lifetime
and may be heated significantly by the wall secondaries. This
heating can be the dominant source term in the energy bal-
ance equation for the confined electrons.

For an observer on the axis of the discharge, all electrons
with kinetic energy below qVp are confined electrons, and all
electrons with energy above qVp are primaries, wall second-
aries, or secondaries from ionization. The confined electrons
occupy a region in velocity space that is not shared with the
other populations. The wall secondaries, when observed near
the center of the discharge, have a distribution function that
is hollow in velocity space. At the energy qVp, the distribu-
tion function of confined electrons should join smoothly with
the distribution of unconfined electrons as a consequence of
diffusion in velocity across the boundary at qVp, as illus-
trated in Fig. 1�a�.

The heating by the wall secondaries can be found from
Eq. �14� by treating the wall secondaries as an ensemble of
beams. The loss by the ensemble is

nse
dQse

dt
= − Yneme� nse

v
�

= − Ynemense� me

2�Tse
�3/2

exp�qVp/Tse�

�	
w



exp�− mev
2/2Tse�4�v dv,

=
− 2meYnense

vt,se
��

, �17�

where vt,se=�2Tse /me is the thermal velocity of the wall sec-
ondaries, Tse is the temperature of the wall secondaries, and
the angled brackets denote an average over the distribution
function of wall secondaries. The acceleration of the wall
secondaries by the sheath at the wall results in the minimum
velocity of secondaries being w=�2qVp /me. Note that the
energy transfer rate is independent of Vp as a result of can-
cellation of exponential factors. An equilibration time �se can
be defined for the secondaries by

1

�se
= −

1

Tse

dQse

dt
=

4Yne

vt,se
3 ��

, �18�

and the rate at which energy is transferred to a confined
electron is then

dQse

dt
=

nse

ne

Tse

�se
. �19�

The integral in Eq. �17� is written in spherical coordinates
using the assumption that the distribution function of wall
secondaries is spherically symmetric. In our experiments, the
secondaries originate from both the cylindrical walls and the
end walls, thus the geometry is neither purely cylindrical nor
spherical. Spherical geometry is used because in our experi-
ment the area of the end caps is not a negligible fraction of
the chamber surface area.

4. Mean energy of electrons from ionization

The energy distribution of electrons from ionization, Eq.
�4� and Fig. 1�b�, is nearly flat for energies much less than W,
thus for qVp�W the mean energy of electrons born confined
is 0.5 qVp. We neglect the electrostatic potential energy of
electrons at their place of birth. This requires that the sheath
at the wall occupy a negligible fraction of the plasma vol-
ume. The potential well of the presheath is approximately
parabolic and has a depth of order Te. For Te�qVp, the cor-
rection for the nonzero potential energy in the presheath is a
small fraction of qVp.

5. Effects of collisions with neutrals

Collisions of electrons with neutrals results in energy loss
as a consequence of recoil by the neutrals. This loss rate is
approximately 3

2Te�2me /M�
m where M is the mass of the
neutrals and 
m is the electron-neutral collision frequency for
momentum transfer. The rate of energy loss per confined
electron can be written − 3

2Te /�n where �n=M / �2me
m� is the
characteristic energy loss time. The collision frequency 
m
can be found from the momentum-transfer collision cross
section, which for 1 eV electrons colliding with argon is of
order 10−16 cm2. For the conditions of our experiment, the
calculated energy loss rate is very much less than the heating
rate from wall secondaries and thus can be ignored.

Another mechanism for electron loss is collisions with
metastable neutral atoms causing a deexcitation that gives
sufficient energy to the electron for it to be lost over the
potential barrier. In the inverse of this process, an unconfined
electron loses energy and becomes confined. A calculation of
the populations of metastable atoms is beyond the scope of
this work. The fact that the plasma parameters from the
model are near to those measured in the experiment suggests
that metastable atoms are not important for energy balance at
the low pressures ��1 mTorr� employed in our experiment.

6. Energy balance

The energy balance equation is obtained by summing the
gains and losses to obtain

1

2

qVp

�elec
+

npri

ne

U

�pri
+

nse

ne

Tse

�se
−

qVp

�elec
−

3

2
Te

�n
= 0, �20�

where the terms in the equation correspond to the mean en-
ergy at birth, the energy transferred from primaries, the en-
ergy transferred from wall secondaries, the energy carried to
the wall by electrons that are lost, and the energy lost in
electron-neutral collisions. We assume that cooling by colli-
sions with neutrals and heating by primaries are negligible
and find

qVp = 2Tse
nse

ne

�elec

�se
. �21�

This may be combined with Eqs. �5� and �6� for electron
particle balance to obtain
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qVp�Te,nse,Tse� = 2.4r*W arctan�P/W�
�Te/mi

�nseTse

ne�se
��1/2

.

�22�

The product ne�se is independent of ne, thus the function
Vp�Te ,nse ,Tse� has no explicit dependence upon ne or R.

The model equations are solved in the following way. In
Eq. �13�, qVp is replaced using Eq. �22� and ne is replaced
using Eq. �3a� by using that the confined electron density is
approximately equal to the total electron density, ne�n0. The
result is a transcendental equation with Te as the unknown
and with independent variables r*, nse, and Tse:

G�Te,ne� =
qVp�Te,nse,Tse�

Te

+ ln�R�ne,Te�F„Vp�Te,nse,Tse�…�2�Te/me�3/2

4�Yne
2 �

= 0. �23�

The roots of the function G�Te ,ne� provide Te as a function
of ne. It is then possible to make plots of Te, qVp�Te ,nse ,Tse�
and R�ne ,Te� as a function of ne. Alternatively, Eq. �3b� may
be used in place of Eq. �3a� and ne, Te, and Vp may be found
as a function of R. The variable nse requires knowledge of
experimental conditions thus the model is not entirely self-
contained.

III. EXPERIMENTS

A. Vacuum chamber

The experiments are performed in an aluminum cylindri-
cal chamber 30 cm in diameter and 69 cm in length, Fig. 2.
Two filaments 3 cm long are located on each of the two end
flanges. Grounded stainless steel meshes are placed immedi-
ately above the filaments. The filament bias potential is
−70 V and the total emission current is 20–160 mA. A tur-
bomolecular pump creates the vacuum and plasmas are gen-
erated in 0.2–0.8 mTorr of argon. The plasma parameters are
determined by a cylindrical Langmuir probe of stainless steel
wire �radius 95 �m and length 27 mm� located on the axis.
Before measurements are made, the probe is cleaned by heat-
ing to incandescence through applying large positive bias

potential. An emissive probe �52� is used to monitor the ra-
dial potential distribution, the plasma potential on the axis,
and the potential very near the chamber walls. The emissive
probe is a small semicircular loop �2 mm in diameter� of
50 �m diameter tungsten wire on a movable shaft. The emis-
sive probe readings provide only a relative measure of the
plasma potential because of contact potentials and the volt-
age drop across the filament.

It is known from previous experiments in our device that
the properties of the chamber walls facing the plasma have a
large effect on probe data �53� and on plasma confinement
�54�. An emissive probe was scanned axially along the wall
of the aluminum chamber in typical discharge conditions.
The separation between the probe filament and the wall, ap-
proximately 1 mm, was kept constant. The potential just
above the aluminum surface was found to have spatial varia-
tions of almost 10 V due to uneven contamination, Fig. 3.
The lack of a clearly defined wall potential blurs the bound-
ary between confined and unconfined electrons. In order to
provide a single-valued wall potential, liners of thin sheet
metal were inserted to cover the walls. One liner is of stain-
less steel and the other is of nickel. Nickel was chosen be-
cause it does not form an oxide layer. The end flanges were
covered with the same material as the liners and a stainless
steel mesh was installed over the pumping port. An insert-
able anode was used occasionally to discharge clean the lin-
ers which improves the uniformity of the wall potential �54�.
After these efforts, a sharp increase in the probe current was
observed at a probe potential near zero volts, which indicated
the boundary between the confined and unconfined electrons
�53�.

B. Langmuir probe interpretation

The Langmuir probe data are analyzed using orbit-
motion-limited �OML� theory for cylindrical probes �55,56�.

FIG. 2. The experimental apparatus.

FIG. 3. The potential adjacent to the wall determined using the
emissive probe. The data are for discharges in the aluminum cham-
ber and in the chamber with nickel and stainless steel liners cleaned
by a dc glow discharge. Also shown is the potential for the nickel
liner cleaned by using chemical solvents prior to the application of
the dc glow. The emissive data have a positive offset of approxi-
mately 1.5 V relative to ground.
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For a Maxwellian population of electrons, the probe current
is given by

Ie��� = 2�aLJeexp���, � � 0,

Ie��� � 2�aLJe�1 +
4�

�
, � � 0, �24�

where Je=neq�Te /2�me is the random current of confined
electrons, �=q�Vb−Vp� /Te , Vb is the probe bias potential, a
is the probe radius, and L is the probe length. The density of
a population is evaluated using the saturation current, which
is defined as the current measured at �=0. The derivative of
the probe current has a maximum at �=0 which provides the
method for determining the plasma potential.

For probe potentials more negative than the wall poten-
tial, no confined electrons are collected and thus the probe
current is from primaries, wall secondaries and secondaries
from ionization. In our device, the largest of these currents is
the current of wall secondaries and these are assumed to be
Maxwellian. For this population, the OML formulas are used
with �=qVb /Tse, where Vp is set to zero because the second-
aries originate at the wall potential, which is very nearly zero
when the walls are clean. For the wall secondaries, Je is
replaced by Jse=nseq�Tse /2�me, which is the random current
of wall secondaries. At probe voltages more positive than the
wall potential, the current from the secondaries is in the satu-
ration regime.

The ion contribution to the probe current is also found
from OML theory using the limit of small temperature.
Laser-induced fluorescence measurements have shown that
the temperature of ions in hot-filament discharges is close to
room temperature, i.e., Ti�0.025 eV �57,58�. The ion cur-
rent thus can be assumed absent for bias potentials more
positive than the plasma potential. From OML theory, Eq.
�24�, the current scales approximately with the square root of
the potential for negative bias. There is an additional contri-
bution to the probe current from ion-neutral collisions occur-
ring near the probe �59–61�. It has been shown that this
current scales approximately linearly with bias potential,
thus an appropriate function for fitting these two ion currents
is

Ii�Vb� = A�− �Vb − Vp� + B�Vb − Vp�, Vb � Vp, �25�

where A and B are constants to be determined.
The probe data are analyzed by the method described in

detail in Ref. �53�. First, the current of ions fitted in the

region from approximately −10 to −40 V is subtracted from
the total current. Second, the OML theory is fitted to the
current of secondary electrons from a point near −6 V to the
wall potential Vwall. The wall potential is determined by a
fitting routine that finds the voltage at which the slope of a
logarithmic plot of probe current changes from Tse to Te.
Third, the current of wall secondaries is extrapolated to posi-
tive voltages using Eq. �24� for ��0 and this extrapolated
current is subtracted from the total current at positive volt-
ages to obtain the current from confined electrons alone. The
OML theory is fit to this current from Vwall to approximately
+3 volts to find ne and Te.

C. Effect of wall surface materials on plasma parameters

Figure 4 shows the remarkable difference between the
raw Langmuir probe data without a liner and with a clean Ni
metal liner. The traces shown are both for an emission cur-
rent of 80 mA and a gas pressure of 0.39 m Torr. All other
discharge conditions are identical. The discharges with the
liners have a much lower density of secondaries from the
wall. The floating potential Vfloat of the probe �see Table I�
occurs at a negative voltage for which no confined electrons
are collected. Thus the floating potential is determined by the
balance of ion current with the currents of electrons from the
unconfined populations. There is a higher density of wall

FIG. 4. Plot of Langmuir probe current as a function of bias
voltage for a discharge with the contaminated aluminum walls �Al�
and with the nickel liner �Ni�.

TABLE I. Plasma parameters for both the secondary and confined electrons deduced from the Langmuir
probe data for 80 mA filament emission and 0.39 mTorr gas pressure. The wall potential, Vwall, for discharges
with metal liners is determined from the break in the slope of the probe data. For discharges in aluminum, the
wall potential is determined by varying the discharge pressure, as in Fig. 5. Data marked with an asterisk are
very approximate because the distribution of secondaries originates at multiple wall potentials.

Tse�eV� nse�cm−3� Te�eV� ne�cm−3� Vfloat�V� Vwall�V�

Stainless steel 2.44 0.8�106 0.08 9.7�107 -2.3 0

Nickel 2.35 1.5�106 0.16 9.8�107 -3.7 -0.1

Aluminum 3.50* 8.9�106* 0.33 2.5�107 -9.2 -1.3
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secondaries in the discharge without the liners and this re-
sults in a more negative floating potential.

Figure 5 shows the electron probe current for the same
discharge conditions with a stainless steel liner, a nickel
liner, and contaminated aluminum. The plotted data have the
fitted ion current subtracted so that only the electron current
is displayed. The measurements with the liners show clearly
that the electron current increases sharply when the probe
potential passes near zero. This increase is the onset of the
collection of confined electrons. For all discharges with lin-
ers, the wall potential determined from the change in slope is
within 0.2 V of zero, which supports the interpretation that
this point is the onset of collection of confined electrons. To

the left of the wall potential, the probe plots for the liners
have a slope corresponding to a temperature of �2.4 V. This
is approximately the temperature expected for secondary
electrons emitted from metals. The deduced wall potentials
and the plasma parameters for the wall secondaries are listed
in Table I.

The discharges with the aluminum wall cannot easily be
decomposed into currents from wall secondaries and from
confined electrons. The probe data, Fig. 5, do not show the
abrupt change in slope that would allow a precise determi-
nation of the wall potential. The break is obscured because of
the larger fraction of secondary electrons, the higher tem-
perature of confined electrons, and because the potential of
the wall regions from which secondary electrons originate is
multi-valued. Large regions are at approximately the floating
potential �Fig. 3� indicating that these regions are poorly
conducting. The confined electrons are lost at the most posi-
tive regions. These regions define an effective wall potential
and an effective wall area for electron loss that is much less
than the total area. The majority of secondary electrons are
likely to originate from places several volts more negative
than the effective wall potential and these electrons gain sev-
eral electron volts of energy when accelerated through the
sheath at the wall. These higher energy electrons add to the
probe current when it is more positive than about −8 V and
give a false appearance of a higher “temperature” for the
secondary electrons �observable in Fig. 5�. The fitted “tem-
perature” for these electrons is 3.5 eV, which is significantly
higher than the �2 eV expected for clean metals.

An estimate of the effective wall potential for the dis-
charges in aluminum can be found by varying the pressure
while keeping the filament emission current constant. This
procedure gives discharges in which the number of confined
electrons is changed with a negligible change in the proper-
ties of wall secondaries. These probe data, Fig. 6, show that
the current from the confined electrons rises above the cur-
rent of wall secondaries at potentials more positive than ap-
proximately −1.3 V. This effective value for the wall poten-

FIG. 5. Probe current, after subtracting the ion contribution, for
the nickel liner, the stainless steel liner, and the contaminated alu-
minum. The vertical line at or to the left of zero marks the deduced
wall potential Vwall and the vertical line to the right of zero marks
the deduced plasma potential Vp. The dotted line is the fitted current
for the unconfined electrons.

FIG. 6. Langmuir probe data for two pressures in the aluminum
chamber without a liner. The current from the confined electrons is
increased at the higher pressure and the current of wall secondaries
is not changed. The data show that the confined electrons are col-
lected for voltages more positive than about −1.3 V.
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tial is used in the analysis of the probe data for unlined
aluminum that appears in Table I.

The current from confined electrons alone for the case of
the nickel liner is shown in Fig. 7. This plot is made by
subtracting from the probe data the extrapolated current of
wall secondaries. The current is very nearly exponential for
more than 5 e-foldings and is fit well by OML theory at both
retarding and accelerating probe voltages. For the aluminum
wall, the model that is used to subtract the current of wall
secondaries is not accurate because the secondaries originate
at different wall potentials. The current deduced for the con-
fined electrons is thus less accurate and is not well fit by
OML theory. For this reason the plasma parameters deduced
for the unlined aluminum chamber �Table I� are also less
accurate.

The temperature of the confined electrons is 0.08 eV for
the stainless steel liner, which generates the lowest density
secondary electrons, and is 0.33 eV with the bare aluminum
the walls which generates a much higher number density of
secondaries. These data show clearly that the temperature of
the confined electrons is closely associated with the number
density of wall secondaries.

D. Comparison of experiments with the model

The model was tested by applying it to two series of dis-
charges, one with different discharge currents and the other
with different gas pressures. The nickel liner was used rather
than the stainless steel liner in order to have higher electron
temperatures that improved the accuracy of the probe analy-
sis. In the first parameter scan, the discharge current was
varied from 20 mA to 160 mA and the pressure was held
constant at 0.39 mTorr. The density of wall secondaries and
the ionization rate R both increase with increasing discharge
current, thus two input parameters of the model, nse and R,
were varied. The measured density and temperature of wall
secondaries, and the measured density of confined electrons
were used as inputs to the model. The confined electron den-
sity is used as the independent variable as an alternative to
the ionization rate R that is not measured directly. The output
parameters of the model are the temperature of the confined
electrons and the plasma potential. The output parameters are
compared with the measured values in Table II and Fig. 8.
The discharge current is changed by a factor of eight and the

FIG. 7. Langmuir probe current corrected for the contribution of
ions and wall secondaries. This current is from the confined elec-
trons alone. The data are the points �separated by 0.1 V� and the
fitted OML theory is the line. The exponential part of the curve has
a nearly constant slope �corresponding to 0.155 eV� for more than 5
e-foldings.

TABLE II. Comparison of measured parameters with calculated parameters from the model. The first
column is the discharge current and the next three columns are measured parameters that are inputs to the
model. The data are for the Ni liner and 0.39 mTorr argon. Columns 5 and 6 are the measured and calculated
electron temperatures for the confined electrons and columns 7 and 8 are the measured and calculated plasma
potentials.

Inputs to model Te Te Vp Vp

Idis�mA� nse�1012 m−3� Tse�eV� ne�1012 m−3� meas. �eV� calc. �eV� meas. �V� calc. �V�

20 0.46 2.0 36 0.09 0.07 0.51 0.52

40 0.82 2.0 62 0.11 0.09 0.66 0.65

80 1.52 2.3 98 0.16 0.12 0.88 0.80

120 2.33 2.3 138 0.18 0.14 1.03 0.94

160 2.94 2.2 164 0.19 0.16 1.10 1.03

FIG. 8. The measured plasma potential Vp and the temperature
of confined electrons Te are plotted as a function of the discharge
current Idis. The uncertainty in the Vp determination �measured rela-
tive to Vwall� is approximately 0.1 V. The error bars on the tempera-
ture are determined by making repeated sweeps at constant condi-
tions. The solid lines are from the model with the measured nse, Tse,
and ne as input parameters.
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density by nearly a factor of five. For this range of condi-
tions, the model values for Te and Vp follow the measured
values to within about 20%.

In the second parameter scan, Fig. 9, the filament emis-
sion is held constant at 80 mA and the pressure is varied
from 0.16 to 0.8 mTorr. This procedure changes the ioniza-
tion rate R and has negligible effect on the density of wall
secondaries. This scan has the advantage of changing only
one input parameter, R; however, there is the disadvantage
that Eq. �22� for energy balance does not contain R and thus
the dependence of Te upon R is weak. The plot in Fig. 9�a�
shows that the model values for electron temperature are
slightly higher than the measured values with the level of
error increasing to �20% at the highest pressures. The same
trend is observed in the model values for plasma potential,
with an error near 30% at the highest pressures. The lower
temperatures at high pressures may be due to the cooling
effect of electron-neutral collisions, which are not included
in Eq. �22�.

The model generates values for the electron density if the
ionization rate R is known. The current density of primary
electrons can be estimated crudely by dividing the filament
emission current by the area of the vacuum chamber. The
ionization rate is then R=nn�nprivpri=nn�Idis /qA where nn is
the neutral gas density and � is the ionization cross-section.
The electron density from the model using this estimate for R
is shown in Fig. 9�b� along with the measured values for the
density. The difference between the measured and calculated
densities is small and the close agreement is probably fortu-
itous.

IV. DISCUSSION

A. Validity of the assumptions

The model is derived using several assumptions that can
be checked using the experimental data. The first assumption
considered is that electrons are born with negligible potential
energy as a consequence of the electrostatic potential being
nearly constant within the discharge. Radial potential profile
measurements with the emissive probe show that the poten-
tial is indeed constant �to within 0.03 V� from the axis to a
point 2 cm from the wall. The electron temperature is sig-
nificantly increased if the grids covering the hot filaments are
removed. The increased temperature may be a consequence
of electrons being created with increased potential energy
within the negative electrostatic potential perturbations near
the filaments. This suggests that modeling electron energy
balance in devices with unshielded filaments could be more
difficult, requiring solutions for the sheath potential profile
near filaments.

A second assumption is that the heating by primary elec-
trons is negligible. This assumption is checked by calculating
the heating rate from primaries using Eq. �16�. The current
density of primaries is estimated by dividing the chamber
surface area by the filament emission current. An alternate
method is to find the current density from the ionization rate
calculated from Eq. �3b�. These two methods give primary
densities of �1�105 cm−3 that is very much less than the
density of wall secondaries, typically 1.5�106 cm−3. The re-
sult for the metal liners is that heating by primaries is ap-
proximately two orders of magnitude smaller than the heat-
ing by wall secondaries. This conclusion probably would not
hold for plasma devices with multidipole magnetic contain-
ment that increases the primary density.

A third assumption is that the additional diffusivity in
velocity space caused by the collisions of the confined elec-
trons with the primaries and wall secondaries is small. The
diffusivity in the Fokker-Planck equation, Eq. �7�, is calcu-
lated using only population I electrons. The diffusivity scales
with the density of field particles and inversely with the cube
of their velocity. The primaries and wall secondaries have a
lower density and a greater velocity than the confined elec-
trons and thus the additional diffusivity from these electrons
is negligible. The unconfined electrons are not ignored, how-
ever, when calculating the heating of the confined electrons.

A fourth assumption is that the current of primaries
�population III� collected by the probe is negligible. For the
80 mA discharges, the current density of primaries estimated

FIG. 9. �a� The plasma potential Vp and the temperature of con-
fined electrons Te are plotted as function of the measured plasma
density ne. The data were taken by varying the gas density from
0.16 to 0.8 mTorr with constant 80 mA emission. �b� The confined
electron density is plotted as a function of the pressure. The input
parameters to the model are nse and Tse �approximately constant�
and the ionization rate R is calculated from the pressure and emis-
sion current. The error bars on the density are determined by mak-
ing repeated sweeps at constant conditions.
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from Idis /A results in a probe current of �2 �A if the distri-
bution of primaries is isotropic. This current is comparable to
the current from wall secondaries and could result in the
density of wall secondaries being overestimated. However,
the filaments occupy a small region of the chamber surface
and the probe is oriented to minimize the cross section when
viewed from the filaments. If these high-energy electrons
made a significant contribution to the probe current, their
contribution would be nearly constant for probe bias voltages
in the range −6 V to 0 V. The current that is observed, Fig. 5,
has a slope corresponding to 2 eV for several e-foldings, and
thus has the slope expected for wall secondaries rather than
for primaries.

A fifth assumption is that the density of unconfined elec-
trons from ionization �population IV� is negligible. This den-
sity may be estimated as Rr*�1/
� by balancing the rates of
creation and loss, where �1/
� is the average of the inverse
velocity of population IV and R is found by using the dis-
charge model. A typical value for R is 4�1017 m−3 s−1,
which gives a density of �4�104 cm−3 for population IV
particles. Thus they contribute negligibly to the probe cur-
rent, to the Fokker-Planck diffusivity, and to the heating of
confined electrons.

B. The physical picture

The data for a discharge at 80 mA and 0.32 mTorr has
been analyzed using the model to obtain the following physi-
cal picture. The ionization rate is R=2.7�1017 m−3 s−1. The
mean lifetime of an ion is ne /R=0.20 ms. The fraction of
electrons born confined is F�qVp�=0.062 and the mean life-
time of a confined electron is 3.2 ms. The secondary equili-
bration time is �se=25 ms which indicates a transfer of 80 eV
per millisecond from the wall secondaries �Tse�2.0 eV� to
the confined electrons. This rate multiplied by �elec yields an
energy transfer of 0.26 eV per confined electron. From Eq.
�21�, the plasma potential should be twice the energy trans-
ferred or 0.52 eV. The measured plasma potential for these
discharge conditions is 0.56 eV. The model value from si-
multaneous solution of the equations is 0.78 eV. The right
hand side of Eq. �13� for this discharge has a value of 5.2
indicating that the electron temperature should be approxi-
mately 0.19 of the plasma potential or 0.10 eV, which is near
to the measured temperature is 0.12 eV. The electron thermal
velocity is 1.9�105 m/s, which indicates that a typical elec-
tron travels 600 m before being lost. This average electron
would be reflected by the sheath about 2000 times before
being lost. The average time between collisions with neutrals
is 0.04 ms which is much shorter than the time scale for
heating. The short time scale for angular scattering validates
the assumption that the loss boundary in velocity is spheri-
cally symmetric.

V. CONCLUSION

A detailed discharge model based upon first principles has
been developed which finds the density, temperature and
plasma potential in hot-filament discharges at pressures

below 1 mTorr. The model requires as an input the density of
secondary electrons from the walls that heat the confined
electrons by equilibration. Experiments in a simple hot-
filament discharge device show that the model gives values
for density, temperature and plasma potential that are within
about 30% of measured values. The experiment was not op-
erated to find the limits to the range of parameters for which
the model is accurate. However, it was demonstrated that the
model is applicable only when the walls of the vacuum
chamber are sufficiently clean to have a single-valued poten-
tial, which result in a single value for the energy at which
electrons are lost. It was also shown that the model applies to
discharges in which the filaments are covered by grids, but
the model gives values for temperature that are too low for
discharges with uncovered filaments.

A more useful model would be one that is in self-
contained form, not requiring measured parameters as inputs.
In the model, the density and temperature of the secondary
electrons and the ionization rate are needed as inputs. The
ionization rate is easily estimated from the discharge current,
chamber area, gas pressure and ionization cross section. The
secondary electron temperature is nearly always near 2.3 eV
for clean metal walls. The density of wall secondaries can be
estimated by the following procedure. The secondary emis-
sion coefficient � of the wall material can be found using the
Sternglass formula for � with input parameters for the wall
material that can be found in tables �62,63�. The current den-
sity of the secondaries at the wall is then approximately Jse
= Idis� /A. The secondary electron density is then found using
Jse=nseq�Tse /2�me. With this procedure, the plasma param-
eters may be predicted using as inputs � , Idis, the chamber
volume and area, the gas pressure, and the ionization cross
section �62�.

It is likely that the model can be extended to other types
of discharges, for example, hot-filament discharges with sur-
face magnetic containment that give much higher densities
of confined electrons. This application will require a more
detailed model for the heating by the primaries that includes
their spread in energy caused by their losing energy to ion-
ization. In addition, the effective areas for the losses of elec-
trons and ions are likely to be different from one another and
different from the area of the chamber walls. The model
might also be extended to cold-cathode discharges. The elec-
trons from these cathodes pass through discharges at low
pressure without slowing sufficiently to be trapped, thus the
heating of the confined electrons is by equilibration with the
primaries and wall secondaries. These discharges operate at
higher pressures, so the model for ion losses should be based
upon ion mobility rather than the “free fall” model. The ex-
periments show that accurate modeling of energy balance is
likely to be very difficult for any device not having a con-
stant wall potential.
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